Misfires and the Ecoboost, when should you worry?

I’ve seen a number of recent inquiries regarding the misfire count on Ford Ecoboost cars and I wanted to explain a little bit more about what it means, how the ECU determines when the car misfires, and when you should worry about it.

What are Misfire Counts?

First of all, the Misfire Count as a live parameter or datalogged represents the number of misfires detected by the ECU since the last engine start. ecoboost-misfire-count

In the case shown above, the COBB Accessport monitor shows that there have been a total of 8 misfires since the engine has been running WITH THE COBB AP turned on.

 What is a Misfire?

Combustion is a complex process. The power generated by an engine comes from the “power” stroke of the 4 stroke cycle. The power stroke is where the spark plug lights the air-fuel mixture inside the cylinder and you get a propagating flame front that evenly pushes the piston down. This is of course the ideal scenario. However sometimes, for a variety of reasons discussed below, the spark plug does not effectively ignite the mixture inside the cylinder. This causes what is known as a misfire. For that one cylinder, power is either low or not made at all during that one cycle and you will feel it as a short hiccup in what is otherwise smooth engine running and power delivery.

How is a Misfire Detected by the ECU?

Modern cars have a high resolution crank position sensor and multi toothed wheels. This is attached to the crank where the accessory pulley is and looks like this.

ecoboost-crank-wheel

The ECU knows when the spark plug fires for each cylinder with respect to the position of the crank wheel and expects the engine to be accelerated during the power stroke. If the crank teeth are not accelerated during the power stroke (you can also feel this sitting in the car) it will determine that the particular cylinder has misfired.

Why does a Misfire Happen?

The engine needs a few elements for good combustion. These are air, the correct amount of fuel, effective mixing between the air and the fuel in the combustion chamber, a strong enough spark, and good compression.

During NORMAL and HEALTHY engine operation misfires do happen but they are random and intermittent. For example, the Ecoboost engine tends to misfires at idle. This is because sometimes the air and fuel do not effectively mix and light off. This is a common issue with direct injection engines where the fuel and air are injected directly in the cylinder with poorer mixing characteristics. Engine designers and engineers get around this in multiple ways – sometimes with tumble flaps that increase air velocity (which the Ford does not have) – and through extensive internal combustion chamber and injection designs. These random idle misfires are undesirable for smooth running and emissions; however they do still happen even in healthy engines. The Misfire Count will pick these up and increment but a Check Engine Light (CEL) will not necessarily be triggered.

Another common reason for misfire is spark plug gap. This happens at high load under wide open throttle operation. A gap that is too large may prevent the plug from lighting when there is a dense mixture in the chamber under boost. We recommend a 0.026 inch spark plug gap to avoid these. You can feel these as small intermittent losses of power at wide open throttle but they are a simple fix.Spark Plug Gap

Other failures of the ignition, injection, or air induction system can cause misfires (including carbon buildup) but the above two causes are the most common in healthy engines.

If there is internal damage to the engine such as a damaged ringland and associated loss of compression this can trigger a continuous misfire for that cylinder. The misfire count will increment much faster and eventually it will trigger a check engine light. This constant misfire is something you will FEEL and HEAR with the car at idle and it will be outside of the norm. A quick compression test will verify the internal health of the engine so there is no guesswork in this diagnosis.

Ecoboost Compression Test

When are the Misfires Codes (P0300, P030X for each cylinder) Triggered

The OEM ECU has a complex mechanism for determining when a misfire is part of normal operation, or when it means there is something that needs to be addressed. When it determines that something needs to be addressed; it will illuminate the Check Engine Light (CEL) and usually indicate which cylinder the issue occurred in (P0301 indicates cylinder 1, P0302 indicates cylinder 2, and so on).

There are two programs built into the ECU for determining two different types of failures. We will call these Type A and Type B.

Type A detects a failure that has recently happened or is sudden in nature (failed coil pack for example). This detects failures over a period of 200 revolutions. If the engine misfires in excess of 23% of the time (46 misfires per 200 engine revolutions) at low RPM or in excess of 5% at high RPM it will trigger the fault code under this condition.

Type B detects a condition that is progressing over time. This has a detection period of 1000 engine revolutions. For example in the Focus RS it triggers if 1.2% of revolutions  result in misfires (12 misfires per 1000 engine revolutions). This is designed to catch progressing conditions such as worn spark plugs.

For the sake of simplicity, assume that your car is idling at 1000RPM. This means that for you to have enough misfires to indicate an out of tolerance condition, you will need to have at least 12 misfires during 1 minute of running at idle.

When should you worry and what should you do?

check-engine-light-ecoboost

Because the ECU is keeping track of the misfires, you don’t need to! When a fault code is triggered for a misfire, this is when you want to investigate and look for an issue. Otherwise, keep spark plugs fresh and gapped correctly and keep in mind that misfires can and do happen on perfectly healthy engines!

The Stratified Team

MK7 GTI Step Colder Spark Plugs and Compression Test

When turning up the power on a vehicle such as we are doing via the COBB Accessport, inevitably more heat is generated. With more heat in the combustion chamber, you may start to move outside the optimal heat range of the OEM plugs and thus have an increased risk of pre-ignition. For more in-depth spark plug tech check out our spark plug article here. Because of this our red development MK7 GTI is getting a fresh set of plugs.

Knock, Pre-Ignition and Heat Range

Do not confuse pre-ignition and detonation (or knock). Knock is what the knock sensor picks up and you can datalog this as ignition corrections during a pull. Knock is caused by multiple flame fronts starting AFTER the initial flame front was started by the spark plug. Replacing the spark plugs with a step colder will not prevent knock – knock is a result of fuel used, tune, and temperatures – and I mention this because we get asked all the time if replacing the plugs will reduce knock. It will not. However it will reduce the CHANCE for pre-ignition and pre-ignition is much more serious than knock and more damaging should it occur. The knock sensors can’t pick up pre-ignition because pre-ignition happens when the air-fuel mixtures ignites BEFORE the spark event and will usually result in a hole in a piston or broken rod. A colder spark plug helps this because it pulls more heat into the head of the engine from the combustion chamber and is less likely to act as a point of ignition before it is triggered by the ECU.

Generally speaking when starting to tune a car, we go for a step colder plug than factory to avoid pre-ignition. Going too cold can prevent the plug getting hot enough to burn off deposits in daily driving and can result in fouling and misfire – so a compromise must be struck for a street car. For the MK7 GTI we chose the popular Denso IKH24KT.mk7-gti-stratified-spark-plugs-compression-1The Install

Installing the spark plugs is fairly straightforward. You will need to remove the engine cover, the coil pack harness, and then pull each individual coil pack. 
mk7-gti-stratified-spark-plugs-compression-3

mk7-gti-stratified-spark-plugs-compression-4

Once the spark plugs have been pulled it’s a good time to give them a look-over. Our plugs were very clean with no speckles or excessive deposits. They were burning cleanly without obvious evidence or oil consumption or knock. The orange deposit is due to running some race fuel additive (and normal if doing so). You can see that the new step colder plugs have a slightly recessed tip which is a feature of colder plugs.

mk7-gti-stratified-spark-plugs-compression-14mk7-gti-stratified-spark-plugs-compression-9

Compression Test (while the plugs are out)

If you have a compression tester handy, this is a great time to perform a quick compression test of your GTI. Very little is required to do so. You simply plug the compression tester in each spark plug hole and crank the engine while holding the accelerator pedal to the floor. I crank until the compression tester needle stops rising and this is around 12-15 cranks per cylinder.

mk7-gti-stratified-spark-plugs-compression-15

What you are looking for in terms of the compression test results is consistency across all the cylinders. The absolute number will depend on the tester used and altitude above sea level. Our development vehicle was very healthy with a 190psi reading across all four cylinders.

mk7-gti-stratified-spark-plugs-compression-17

Before putting the new spark plugs in and torquing them down to 18-20ft/lb it is worth checking their gap using a feeler gauge. We recommend 0.024-0.026″ (0.60-0.66mm) to prevent misfiring under heavy load. The gap will naturally open up over time as they wear out and heat cycle. The new Densos did not require any adjustment of the gap.

mk7-gti-stratified-spark-plugs-compression-7

Once the plugs are back in along with the coil packs and harness, you’re done! You’ve now checked the health of your motor with a quick compression test, looked at how clean it is running via inspecting the old plugs, and freshened up the ignition system with new plugs that are more tolerant to tuned, higher performance driving.

The Stratified Team

Does a leaner Air-Fuel Ratio result in more power on the MK7 GTI?

Calibrating an engine revolves around solid data analysis and testing of any hypotheses. In the case of the MK7 GTI, the OEM ECU calibration commands a relatively lean air-fuel ratio (AFR) target during wide open throttle operation. For the majority of a pull, unless one of the temperature failsafe thresholds are triggered, the ECU will command a 14.7 AFR tapering to mid 13s by redline.
vw-gti-mk7-oem-air-fuel-ratios
It has to be understood that these targets are within the context of the OEM tune. The boost pressure targets, ignition timing targets, and variable timing targets are all taken into consideration when selecting the appropriate air fuel ratio. On top of this, economical operation is a strong requirement for the OEM.

 

When pushing the car beyond the factory setup in order extract maximum effort from the engine, all variables including the air-fuel ratio must be reconsidered and retested.
When commanding a higher output the engine requires more in-cylinder cooling in order to avoid detonation (knock) while maintaining maximum performance. This is the case with other internal combustion engines we have worked with but we had to put the hypothesis to the test for the EA888 Gen3 as well.

 

The COBB Accessport gives us a very powerful analysis and datalogging tool at a high sample rate of 12hz (that means we get 12 datapoints per second for each sensor or actuator signal we log)
vw-gti-mk7-cobb-accessport
We tested this hypothesis in a controlled environment where we only varied air-fuel ratios. We made sure that this was done on a hot day with 91 octane fuel that is knock prone. This was done such that we can clearly see the effect of the air-fuel ratio without any other variables interfering.
vw-gti-mk7-stratified-tune-dyno
Here you can see that the richer run did produce more power. The question now is why? We looked at the knock traces from both runs for to get an answer to this as boost and temperatures were identical. The graph below answers this question.
vw-gti-mk7-stratified-tune-dyno-knock
As you can see, the leaner AFRs do not offer the necessary in-cylinder cooling to prevent the engine from knocking. Yes, the engine knocks in both runs because we have setup the test as such to ensure we see a contrast between the two sets of data. However you can see that the richer air-fuel ratios result in a diminishing knock trend which in turn results in the engine making more power and staying safer!

 

Finally, we have to ensure the data is repeatable. For this we have two back to back runs of the richer tune. You can see that the data is repeatable within 2-3whp which gives us further confidence in the test results
vw-gti-mk7-stratified-tune-dyno-repeatableThe conclusion to all this – when calibrating a vehicle outside of the OEM parameters, all variables and hypotheses need testing in order to optimize the new set up.
Happy Tuning,
The Stratified Team

So you got a bad tank of gas … now what?

It happens. You are travelling, you don’t use your regular gas station, they change the fuel quality in your area. So now you are stuck with a bad tank of gas (and what I mean by this is fuel with lower actual octane than what you usually use) in your pride and joy and your heart sinks at the thought. Here’s what that looks like, means, and how to address it.

First of all, keep in mind that your car has modern reactive knock sensors and these will pick up the knock from the poorer gas and pull back timing to keep the engine safe. This applies to all modern vehicle platforms. On an Ecoboost for example, the car will LEARN the fuel octane you are using. The OAR (octane adjust ratio) parameter is used to do this. It will adjust closer to positive 1 and timing will be pulled preemptively from the tune to prevent the knock from occurring.

The engine won’t all of a sudden explode because of knock from a bad tank of gas if the tune is setup to make use of these safety features. It is not ideal, and if the fuel quality in your area has permanently changed you should have the tune adjusted. However, this NON-LSPI poor fuel quality knock can be handled quite well by the knock sensors to ensure engine safety.

Keeping an eye on your datalogs and live monitors will tell you if something is out of the norm. Here’s how our 3rd gear pull corrections look like with a bad tank of gas.

focus-rs-bad-gas-knockYou can see that the timing additions in this 3rd gear pull stop after adding about 1.5* and then drop due to knock ending up in the -2.5* region.

Here’s how our usual “good gas” behaves. These pulls are taken on the same road, same modifications, and same temperatures but with better fuel.

focus-rs-bad-good-gas-no-knock

Notice that there are much fewer “drops” as the ECU is adding timing during the pull. Most cylinders are adding 1.5-2* near the end of the pull instead of pulling -2.5*.

Aside from the engine safety concern, this loss of timing advance does hurt performance. How much? In the case of our Focus RS the timing difference is worth a solid 16whp and 10 ftlb of torque. A ballpark figure is that 1* of timing accounts for around 3whp on the Ecoboost 2.0 and 2.3 engines.

focus-rs-gas-quality-comparison-pull-stratified

So what can be done if you run into bad gas? Here are some tips:

  • Wait it out if you know it’s a poor tank. Unless the gas is VERY bad the car will rely on its sensors to adjust timing dynamically. If you are seeing consistent corrections take it a bit easier until the tank runs out.
  • Run a low boost map – we include this with all of our tunes.
  • Add some octane booster to the tank. A bottle of the over the counter stuff will make a 2-4* timing advance difference. More expensive Race Gas or Boostane brands will have a bigger impact but they can’t be found everywhere.
  • Add 1-2 gallons of E85 to the tank and top up with premium. Adding a splash of E85 increase the octane enough to ride a bad tank out and does not require a tune change.
  • If you are consistently seeing “bad gas” in your area, consider having the tune adjusted.

Understanding your PCV system, upgrades, and catch cans

Upgrading the PCV system on turbocharged cars is common among the enthusiast community. This has historical roots with older vehicles that had sub-par PCV systems and looser piston sealing tolerances that NEEDED modification to vent effectively. Modern cars have much better designed systems that actually include catch cans (catch and release actually) right from the factory. More on this later.

First of all we have to know what we’re working with. This means delving into what the PCV system is and what it does. The PCV system serves 2 purposes:

1. It maintains a low crankcase pressure. Every piston engine will have some level of blowby which is caused by combustion gasses that move past the piston rings during the power stroke due to the high in-cylinder pressure. The looser the tolerances on the motor, the more of these gases will escape below the pistons. If you don’t vent them from the crankcase they can cause issues such as a decrease in power and will push oil out of the crankcase. This can mean dipsticks popping out, seals leaking oil, and turbos smoking from the oil drain being backed up and not draining. We often seen turbo seals misdiagnosed due to the poor crankcase ventilation.

2. Excessive crankcase pressure used to be vented directly to the atmosphere. However this does pollute and now it is being recirculated back into the intake tract. While this does bring some oil into the intake tract, pulling it back in HELPS in reducing crankcase pressure which is a good thing for performance.

On turbocharged cars you need to vent crankcase pressure under 2 distinct conditions: boost as well as under vacuum. This is why you will see 2 PCV pathways on modern turbo cars.

1.The vent under vacuum. The image below shows what it looks like on an Ecoboost or Mazda DISI engine but all manufacturers have a similar version of this idea. It is made of an air to oil separator (an OEM catch can), a valve that closes under boost, and a hose directly to the manifold. This side of the PCV system pulls crankcase pressure out when there is vacuum in the intake manifold such as at idle and during cruising. It separates the oil film and gases through the OEM separator, returns the oil to the crankcase and pulls the gases through the manifold. Under boost the PCV valve closes and prevents boost pressure from entering the crankcase so this side of the system does not flow at all under boost.

pcv-crankcase-vent-ecoboost-stratified

ecoboost-oem-air-to-oil-separator

2. The vent under boost. When the PCV valve is closed and the car is under boost as well as to a lesser extent under vacuum when it works together with the first system, this is where crankcase pressure is pulled from. The intake before the turbo has a vacuum effect from the turbo pulling in air through the intake tube and gases are PULLED from the top of the valve cover. The valve cover itself acts as an air to oil separator (a second OEM catch can which is also baffled) and returns the separated oil to the crankcase where it belongs.

pcv-crankcase-vent-under-boost-ecoboost-stratified

pcv-crankcase-vent-valve-cover-ecoboost-stratified

Now, let’s talk about improvements to these systems. Most people try to improve a few things:

1. The PCV system flow. If you have a motor that is pretty loose (a more race oriented built engine with forged internals) you will need to pull more crankcase gases because the engine does not seal as well especially when cold. Combine that with very high boost and you may need to vent more. The RS motor for example has larger PCV openings versus the ST motor in the Fords. In order to improve flow, you need to add more passages or enlarge air passages. However keep in mind that the OEM PCV system is well designed for the OEM motor. If you are getting a lot of blowby with the OEM motor, you probably need to address why there is so much blowby from the pistons rather than a better flowing PCV system. Also keep in mind that any obstruction you add to the PCV system (ie extra catch cans) can impede flow and therefore can cause issues such as higher oil consumption, leaking, and smoking turbos.

2. Keeping oil out of the manifold/engine. This is a big one for DI (direct injection) cars and turbo cars in general as oil coats the intake valves and can cause knock if a lot of it enters the air stream. This is the intent when installing ADDITIONAL oil to air separators such as catch cans. The additional catch can DOES help in the separation BUT the effectiveness is difficult to measure. It can look like they are doing a lot when emptied but the fluid pulled out is in large part condensation that is a normal occurrence as motors come up to temperature after a cold start. Below are some of our observations regarding installing additional air to oil separators on top of the OEM ones already there.

catch-cans

A. They do not stop carbon buildup on the back of valves in DI (direct injected cars). We have seen this time and time again and this is because some oil film still makes its way past the catch cans just like it does past the OEM catch cans. Further, flow reversion during engine operation still brings in oil over the valves. The most effective methods at preventing carbon buildup are: 1. Using high quality oils (some are being designed for DI operation specifically), 2. changing the oil often, 3. driving the cars hard to maintain high valve temperatures (yes having fun!) 4. and if possible running secondary injection across the intake valves which washes them clean and which more and more OEMs are starting to use.

B. They can cause PCV flow issues and should be monitored. If they overflow or freeze during the winter (which they do; remember the content of these is mostly water) they can block the system altogether. Similar issue if the fittings leak.

C. The most common location people install them is on the manifold to crankcase connection. This connection is not flowing any gases while the car is under boost. Remember there are 2 PCV systems.

D. They will not solve mechanical issues such as smoking turbos, excessive oil consumption, etc.; they can exacerbate these issues. Make sure you fully investigate the root causes of such issues.

The options to eliminate oil completely from the intake have their caveats. One is to vent the gases to the atmosphere which we don’t recommend. This is not as effective flow wise because there is no vacuum draw from the turbo or manifold and to top it off these gases smell and get pulled into the cabin air vents. Another option is to use the exhaust system to pull gases out using a venturi. This does require a good amount of customization to the exhaust system. Finally, you can have a separate pump to pull crankcase pressure out which is a bit extreme for a street driven vehicle.

Overall, it is important to understand that the flow of the OEM PCV system in a modern car is well matched to the OEM motor. Excessive crankcase pressure means something is mechanically wrong – either a blocked PCV system or excessive cylinder leakage that should be addressed. On a looser race built engine, increasing that flow means adding additional pathways for crankcase venting as well as different air to oil separators to match the new system. This means an overhaul of the OEM system altogether with bigger or multiple tubes and new separators/catch cans. 

Hope this sheds some light on the the PCV system in your car. Happy Tuning!

The Stratified Team